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Computational analysis of thermal-motion effects
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The distributions of bond topological properties (BTPs) of the electron density

upon thermal vibrations of the nuclei are computationally examined to estimate

different statistical figures, especially uncertainties, of these properties. The

statistical analysis is based on a large ensemble of BTPs of the electron densities

for thermally perturbed nuclear geometries of the formamide molecule. Each

bond critical point (BCP) is found to follow a normal distribution whose

covariance correlates with the displacement amplitudes of the nuclei involved in

the bond. The BTPs are found to be markedly affected not only by normal

modes of the significant bond-stretching component but also by modes that

involve mainly hydrogen-atom displacements. Their probability distribution

function can be decently described by Gumbel-type functions of positive

(negative) skewness for the bonds formed by non-hydrogen (hydrogen) atoms.

1. Introduction

Bond topological properties (BTPs), such as the location of

the bond critical point (BCP, rBCP), the electron density (ED,

�BCP), the Laplacian (r2�BCP) and the eigenvalues of the

Hessian of the ED at the BCP, are well established indicators

of the nature of the chemical bond and atomic interaction in

general (Bader, 1990). They are widely regarded to be

accessible not only via quantum-chemical calculations but also

through analysis of high-resolution X-ray Bragg structure

factors (SFs). In fact, indispensable parts of modern X-ray

charge-density reports are lengthy tables posed to match the

BTPs of ‘the static’ ED extracted from a set of diffraction data

(experimental ED) with those computationally derived from

an approximate solution to the Schrödinger equation of the

isolated molecule or the periodic system (theoretical ED).

Obviously, such a collation lacks the bona fide verification

power due to the lack of a well established link between what

is claimed to be ‘the’ experimental density (a particular least-

squares solution of SF fitting utilizing a particular ED model)

and what is elected to be ‘the’ theoretical density (a certain

quantum-chemical method utilizing a certain basis set).

Spuriously, the majority of X-ray charge-density studies reveal

from good to excellent agreement between the BTPs obtained

by the two methods, especially for molecular crystals (Korit-

sanszky & Coppens, 2001; Gatti, 2005). It is most likely due to

these findings that the crystallographic community tends to

misuse these properties, to the extent that comparison

between theoretical and experimental BTP values has become

an ultimate and almost mandatory means to validate experi-

mental EDs.

Such assertions for verification purposes should be

convincingly substantiated by standard uncertainties (s.u.’s) of

the experimental BTPs. These quantities are, however,
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notoriously underestimated – typically rounded to the

hundredth (e Å�3)/tenth (e Å�5) place for the ED/its Lapla-

cian at the BCP – based on the popular pseudoatom model

(Hansen & Coppens, 1978). Uncertainties output by XD

(Volkov et al., 2006), for example, are calculated on the basis of

a linear error-propagation scheme that includes only the least-

squares (LS) variances of multipole parameters but ignores

the ED’s (non-linear) dependence on other refined para-

meters, such as nuclear positions and radial screening factors.

A more delicate issue of this over-simplified error estimation

stems from the often-overlooked fact that the target of the LS

fit is, of course, a set of SFs associated with the space–time

average ED (a dynamic ED at best) and not the static ED.

However, for the evaluation of the uncertainty of the latter

property, the correlations between static (nuclear positions,

multipole populations and radial screening parameters) and

dynamic (mean-square displacement amplitudes, MSDAs)

variables are completely ignored which makes more of an

intuitive than common sense, since these two sets of para-

meters are jointly refined against experimental SFs and, thus,

their LS estimates are inevitably linked. In the course of a

pseudoatom refinement, for example, the correlations

between quadrupole populations and anisotropic displace-

ment parameters (ADPs) typically settle in the range of 70–

80%, which is a lucid warning about significant linear depen-

dence of ‘basis functions’ comprising the scattering model

fitted to the X-ray data (putting it simply, the ‘knowledge’ of

one set of parameters fixes the other set within a 70–80%

certainty). In the presence of such high correlations, even a

modest attempt to distinguish between static and dynamic

variables and their properties is quite an obscure endeavour.

Another distinct issue is the error estimation of the location of

a BCP, since it is commonly derived via an iterative numerical

procedure and thus analytic error propagation schemes cannot

be utilized. It is noteworthy to mention in this respect that

even a narrow dispersion of the BCP location can transform a

high uncertainty in the Laplacian at the BCP [especially in

polar bonds for which the Laplacian can exhibit dramatic

change in the vicinity of the BCP (Gatti et al., 1992)]. In

summary, error estimation of these ‘experimental’ properties

is far from being trivial and the issue deserves more attention

today than it has ever received.

The quantum-chemical approach designates the equili-

brium molecular geometry to the global minimum of the

electronic energy as an approximate function of the nuclear

geometry that is numerically but self-consistently evaluated.

According to the Hohenberg–Kohn (HK) theorem, the

nuclear configuration (external potential) uniquely deter-

mines the ED (Hohenberg & Kohn, 1964). This also implies

that to each nuclear configuration visited during nuclear

vibrations there belongs one and only one ED. The intrinsic

connection between the nuclear potential and the ED is only

formally, but neither directly nor self-consistently, imposed on

X-ray data fitting. The commonly used SF models all subsume

the harmonic convolution approximation (one-centre parti-

tioning and rigid following) (Debye, 1913; Waller, 1923),

according to which the thermally averaged ED is deducible

from that of a hypothetical stationary ED corresponding to

the equilibrium nuclear configuration, which is however not

known a priori, but to be derived simultaneously with the ED

in the course of data fitting, and thus it is contingent upon the

adequacy of the ED model in use. While it appears to be

unavoidable, this approach obviously violates both the Born–

Oppenheimer (BO) approximation (Born & Oppenheimer,

1927) and the HK theorem. Consequently, the experimental

nuclear geometry, the static ED and the nuclear ADPs asso-

ciated with it have a rather fragile connection. The diffraction

geometry, corresponding to the converged LS data fit, is

usually taken for granted as the equilibrium geometry, that is,

the thermally averaged locations of the nuclei are assumed to

form the stationary nuclear state characterized by vanishing

forces acting on each nucleus. Quite obviously, this criterion

cannot be met even if the scattering model applied perfectly

accounts for the diffraction data. Simply putting it, X-ray-

diffraction-based molecular geometries cannot trivially be

identified with stationary isolated-molecule geometries, and

this is not purely due to intermolecular interactions governing

solid-phase formation.

This computational study is tailored for estimating the s.u.’s

of BCP locations and the BTPs of the molecular ED due to

internal harmonic nuclear vibrations, or in other words, due to

the distribution of nuclear positions of known s.u.’s. Since the

ED is a unique functional of the external potential (electron–

nuclei Coulomb potential) and since the nuclear geometry can

be identified as the collection of (3, �3) critical points of the

ED, the analysis presented here is simply about revealing

correlations between different types of critical points of the

ED of a single molecule in thermal equilibrium with its

environment and treated within the framework of stationary

quantum mechanics. From the crystallographer’s point of view,

this computational experiment is aimed at elucidating corre-

lations of errors in local ED properties in the hope of trig-

gering progress in our error-estimation practices. While our

most recent study validates the convolution approximation

(Michael & Koritsanszky, 2014), the current contribution is

devoted to an exploratory statistical analysis of how the local

topology of the ED is affected by intramolecular nuclear

vibrations that are not directly accessible via Bragg scattering.

2. Density sampling

Within the harmonic approximation to thermal motion, the

nuclear displacements follow normal distributions, thus

providing a mathematically straightforward and a physically

plausible way to generate large quantum-chemical samples of

local properties of static EDs from approximate solutions of

the isolated-molecule clamped Hamiltonians (with well

defined nuclear arrangements). In pursuit of this goal, we

generate a large ensemble of geometries (M = 500 000 nuclear

configurations) consistent with the harmonic internal vibra-

tions of the formamide molecule. To each nuclear configura-

tion of this ensemble, an approximate ‘single-point’

wavefunction is calculated and the topology of the corre-

sponding static ED is derived (Volkov et al., 2009) to obtain an
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ensemble of static BTPs, which forms the basis of the subse-

quent statistical analysis.

All calculations were performed at the B3LYP/6-311G**

level of theory (Becke, 1988) using the Gaussian09 program

package (Frisch et al., 2009) and locally developed computer

codes. First, the MSDA matrix (U) was generated via

harmonic vibration analysis of the optimized planar molecule

(xy plane),

U ¼ huuiT ¼ LrL; ð1Þ

where u ¼ R� R0 is the 3N row vector (u being its transpose

column vector) of Cartesian nuclear displacements relative to

the equilibrium positions R0 and r = {�j¼1;3N} is the diagonal

(eigenvalue) matrix of the temperature-dependent normal-

mode mean-square displacements,

�j ¼
h

8�2vj

coth
hvj

2kBT

� �
; ð2Þ

with vj being the frequency of the jth mode (Higgs, 1955).

Table 1 lists the harmonic wavenumbers and the normal-mode

mean-square displacements calculated for T = 23 K. This

analysis leads to a 3N-multivariate normal distribution of

nuclear displacements:

Nð0;UÞ ¼ ð2�Þ�ð3N=2Þ
jUj�1=2 exp �

1

2
uU�1u

� �
: ð3Þ

The block-diagonal elements of the Cartesian MSDA matrix

U represent the ADPs for each atom. A distorted geometry is

expressed as a linear combination of nuclear displacements, dj,

added to the equilibrium geometry, R0. For each normal mode

of vibration, we have, from the Gaussian09 calculations, the

unit displacements in Cartesian coordinates as well as the

amplitude of displacement (the standard deviation of a normal

mode). Each perturbed geometry, Ri, is to be considered as

one of the many members of the ensemble {Ri} exemplifying

harmonic oscillation about the equilibrium geometry resulting

in �ðfRigÞ ¼ R0 and �2ðfRigÞ ¼ U (� and � denoting,

respectively, the mean and standard deviation of the normal

distribution). To create a perturbed geometry, Ri, it is suffi-

cient to sample each normal mode independently as the 3N

vector of nuclear positions is a linear combination of displa-

cements from the equilibrium geometry. Every displacement is

associated with one of the 3N � 6 normal modes, each defined

by a normalized vector of displacement, dj, and the related

mean-square amplitude, �2
j :

Ri ¼ R0 þ
P3N�6

j¼1

r
ðjÞ
� dj; ð4Þ

where r
ðjÞ
� is an independent random variable drawn from the

normal distribution N(0, �j).

It is important to note that all the molecular geometries

generated in this way are checked whether or not they are

topologically equivalent to the stationary (optimized)

geometry, that is, if their ED had the same molecular graph

(the same number and type of critical points). For the atom-

numbering scheme we refer to the ORTEP (Burnett &

Johnson, 1996) plot displayed in Fig. 1, which visualizes the

nuclear (and BCP) thermal ellipsoids at the 90% probability

level.

3. Validation of the sample

To check if the geometries are truly representative of

harmonic vibrations and if the sample size is large enough to

faithfully represent the population, it is sufficient to show that

the ensemble mean (statistical average, Q ¼ M�1
PM

k Rk)

reflects the equilibrium geometry and that the sample covar-

iance [�ij = (M � 1)�1
PM

k ðR
ðkÞ
i �QiÞðR

ðkÞ
j �QjÞ] returns the

input MSDA calculated from normal-mode analysis. In Table 2

the distances between the statistical mean and the equilibrium
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Table 1
Internal normal modes, wavenumbers (v) and the corresponding mean-
square displacements (�) of the formamide molecule.

Units for v, cm�1, and �, 106 Å2.

Mode 1 NH2 wagging 2 NCO bend 3 NH2 torsion 4 CH OP bend
v 216.8 567.6 650.8 1048.3
� 63695 12176 21368 10340

Mode 5 NH2 IP bend 6 CN stretch 7 CH bend 8 NH2 scissor
v 1055.3 1266.8 1422.4 1620.1
� 8948 4743 9852 8434

Mode 9 CO stretch 10 CH stretch 11 NH2 S stretch 12 NH2 AS stretch
v 1817.0 2921.7 3582.1 3720.0
� 1247 5320 4503 4101

Figure 1
ORTEP plot of 90% probability thermal ellipsoids due to internal modes
of vibrations of the formamide molecule. Ellipsoids drawn on the bond
lines between the nuclei correspond to the covariance in the location of
bond critical points (BNM, between nuclei N and M) of the electron
density calculated over an ensemble of half a million nuclear configura-
tions.



nuclear positions are listed, while Fig. 2 shows the Cartesian

displacement components binned and plotted together with

the fitted normal distribution for the N3 and O6 nuclei. The

error for all coordinates of both fits remains under 0.5%,

indicating that the sample distribution is a reliable repre-

sentation of the population distribution. Similarly, low relative

errors were obtained for all nuclei. Table 3 compares the

ADPs and the sample variances of the nuclei; the largest

difference (2.7� 10�5) represents the correlated motion of H4

and H5 nuclei in the z direction with a relative error of only

0.147%.

4. Distribution of bond critical points

A quite remarkable observation, undoubtedly emerging from

the statistical analysis, is that the BCP locations follow normal

distributions. Moreover, they appear to correlate in an

elementary fashion with the distributions of the nuclei. The

distances between the equilibrium (rBCP) and the sample mean

(rBCP) BCP positions are listed in Table 4. The standard

deviations of these displacements are found by fitting

univariate Gaussians to the Cartesian components of the rBCP

ensemble. The largest per cent error of the fit (0.77%) appears

for the X coordinate of the C2—N3 BCP location. Fig. 3 shows

the comparison of the fitted Gaussians to the C2—N3 and the

C2—O6 BCP distributions, while the sample-based covariance

matrices (the ‘ADPs of BCPs’) are listed in Table 5. The

corresponding thermal ellipsoids (also drawn in Fig. 1) show

obvious correlations with those of the nuclei involved in the

bond.

To find a relationship between the statistical ADPs (sample

covariance) of BCPs and the ADPs of nuclei, we test the

simplest scheme that assumes a linear dependence for a
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Table 3
Anisotropic displacement parameters for the nuclei from analytic (first
row) and statistical (second row) frameworks (units 106 Å2).

Atom U11 U22 U33 U12 U13 U23

H1 10401 7150 10636 1993 0 0
10395 7146 10604 1972 17 7

C2 592 997 693 �72 0 0
594 998 691 �71 0 �1

N3 710 348 1081 200 0 0
710 349 1081 202 �3 �1

H4 14314 5750 30386 3475 0 0
14302 5751 30402 3478 �30 �8

H5 5334 12758 52542 1920 0 0
5316 12758 52551 1911 �13 �92

O6 567 403 125 236 0 0
567 403 125 236 0 0

Table 4
Distances between the equilibrium (rBCP) and the sample-mean (rBCP)
BCP locations (units Å).

BCP Distance

C2—H1 1.15e-03
C2—N3 6.78e-03
C2—O6 1.45e-03
N3—H4 3.35e-03
N3—H5 5.09e-03

Table 2
Distances between static (geometry-optimized) and the sample-mean
nuclear positions (units Å).

Nucleus Distance

H1 4.46e-04
C2 2.94e-05
N3 3.37e-05
H4 3.67e-04
H5 1.71e-04
O6 2.89e-05

Figure 2
Cartesian displacements (X;Y;Z ¼ R;B;G) binned and plotted
together with fitted Gaussian distributions (black) for the N3 (a) and
O6 (b) nuclei.



general riding ED position (two-centre basis functions)

suggested earlier (Scheringer, 1977a,b). Accordingly, we esti-

mate the ADP of a BCP (U*) as a linear combination of

nuclear ADPs, Ui,i, and their correlations, Ui,j (Ui,i repre-

senting the ADPs of the ith nucleus and Ui,j representing the

correlation between the ith and jth nucleus):

U� ¼
PN
i¼1

PN
j¼1

�i�jU
i;j ð5Þ

subject to the constraint of
PN

i¼1 �i ¼ 1. The simplest

approximation is restricted to N ¼ 2, that is, only the nuclei of

the atoms involved in the bond. We test three methods, each

involving a single parameter, �1 (since �2 = 1 � �1): method

1 utilizes the entire sample to find the least-squares estimate

for �1, method 2 defines �1 as the distance of the BCP from

one of the nuclei relative to the bond length,

�1 ¼
jrBCP � R1j

jR2 � R1j
; ð6Þ

while method 3 resembles method 2, but ignores the correla-

tion term in equation (5). The difference between the latter

two approaches can illuminate the importance of the off-

diagonal elements of the MSDA (not accessible from Bragg

diffraction data) in the construction of U*. Based on the

errors, listed in Table 6, both methods 2 and 3 provide a

reasonable estimation for the BCP ADPs (though method 3

seems to fail for the polar C2—O6 bond).

5. Bond topological properties do not follow normal
distributions

Fig. 4 plots the distribution of �BCP and ther2�BCP data for the

C2—O6 and the C2—N3 bonds against the corresponding

bond distances. To make these plots more comprehensible, the

BTP sample of half a million is divided into three sets colour-

coded depending on whether both (blue), only one (green) or

none (red) of the nuclei involved in the bond are situated

inside their associated 50% probability ellipsoids. An ellipsoid

is defined as uU�1u ¼ c2, where c = 1.538 for a probability of

50%. In general, the probability of finding an atom inside an

ellipsoid is described as (Burnett & Johnson, 1996)
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Figure 3
Cartesian displacements (X;Y;Z ¼ R;B;G) of bond critical point
locations binned and plotted alongside the fitted Gaussian distributions
(black) for C2—N3 (a) and C2—O6 (b) bonds.

Table 5
Anisotropic displacement parameters of bond critical points (units
106 Å2).

BCP U11 U22 U33 U12 U13 U23

C2—H1 3579 3869 3160 155 5 2
C2—N3 347 535 310 113 0 0
C2—O6 224 296 260 17 0 0
N3—H4 7223 2370 14169 2027 12 �3
N3—H5 2332 5919 24867 1082 �3 �42

Table 6
Per cent errors in reproduction of the anisotropic displacement
amplitudes of bond critical points using various methods described in
the text.

Bonds
Method 1
error

Method 2
error

Method 3
error

H1—C2 3.22 4.75 10.02
C2—N3 7.79 17.05 9.23
C2—O6 2.12 3.43 22.20
N3—H4 0.26 0.37 2.06
N3—H5 0.09 0.18 1.56



PðcÞ ¼
2

�

� �1=2Zc

0

r2 expð�r2=2Þ dr

¼
2

�

� �1=2

�ce�c2=2 þ
�

2

� �1=2

Erf
c

21=2

� �� �
: ð7Þ

The variation of the C2—N3 r2�BCP sample distribution

versus the bond distance is quite compelling. Fig. 5 also shows

how each normal mode, acting in isolation, affects the distri-

bution of the Laplacian data (black dotted curves labelled by

integers corresponding to the normal-mode designation used

in Table 1). Curve i displays r2�BCP for nuclear positions

corresponding to the ith normal-mode displacement vector

(di):

Ri ¼ R0
þ sidi; ð8Þ

where

1� 6�i � si � 1þ 6�i: ð9Þ

In Fig. 5 the overall r2�BCP distribution for the C2—N3 bond

is superimposed by distributions due to normal modes that

have a significant (5a) and negligible (5b) bond-stretching

component. It is obvious, and in line with earlier observations,

that r2�BCP is sensitive to bond-distance change (Gibbs et al.,

1998, 2008). What is however non-trivial and quite compelling

is the degree to which r2�BCP is affected by modes having

minor bond-stretching contribution (mode numbers: 1, 2, 7

and 10). For example, the NH2 wagging or the C—H stretching
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Figure 4
Ensemble distributions of �(rBCP) (a), (c) and r2�ðrBCPÞ (b), (d) for the C—O (a), (b) and C—N (c), (d) bonds. Each point represents one of the 500 000
members of the ensemble and is classified by how many (0 – red, 1 – green, 2 – blue) of the nuclei are inside their associated 50% probability ellipsoid.
The black dotted lines show the effect that bond-length alternation, in isolation, has on the BTPs.



modes hardly alter the C2—N3 bond length, yet the r2�BCP

shows a crucial dependence on these modes; it varies in the

range of 0.77 and 1.20 e Å�5 for the NH2 and C—H modes,

respectively, if the sample size is limited to geometries for

which both the C2 and N3 nuclei are inside their respective

50% ellipsoid. On the other hand, the NH2 torsion (3), the C—

H bending (4) and the two N—H stretching (11, 12) modes

have almost no effect on the C2—N3 Laplacian at the BTP.

For a detailed classification of the sampling distributions, we

bin the centred ensemble (deviations of each BTP from the

mean BTP where �i is an element of the sample and �� is the

stationary ED),

� ¼ f�ig ¼ fr
2�iðr

i
BCPÞ � r

2��ðrBCPÞg; ð10Þ

and fit these binned data with appropriately parameterized

(analytic) distributions to estimate the statistical moments up

to fourth order. A visual inspection of these graphs (displayed

in Fig. 6 for different bonds) leads to the conclusion that the

BTPs are not normally distributed about their mean. This is

quantitatively supported by the entries in Table 7 containing

the first four standardized statistical moments and the per cent

errors of fitting the binned data to normal distributions.

To model the binned BTP data, we adopt the Gumbel

probability distribution function (PDF) (Gumbel, 1935):

PðzÞ ¼
1

�
expf�½zþ expð�zÞ�g; ð11Þ

where z ¼ 	½ðq� "Þ=��, with " and � being the shape para-

meters to be fitted, and

	 ¼ Sign½SkewnessðPÞ�

is chosen so that the PDF is skewed positively (tails to the

right) or negatively (tails to the left) for 	 = 1 or 	 = �1,

respectively. The maximum-likelihood estimations of the

Gumbel parameters (" and �) are listed in Table 8. BTPs (�)
for bonds formed by non-H atoms (C2—N3 and C2—O6) are

shown in Fig. 6 to be leptokurtic distributed (tailed to the

right) following the ‘Gumbel-Max’ (	 = 1) distribution

(maximum extreme value type I). The r2�BCP for bonds

including H atoms are however platykurtic (tailed to the left)

following the ‘Gumbel-Min’ (	 = �1) function (minimum

extreme value type I).
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Figure 5
The ensemble distributions of r2�ðrBCPÞ for the C2—N3 bond (green
dots) superimposed by curves (black dots) representing alternations upon
nuclear geometries due to individual normal modes numbered according
to Table 1; (a) modes with notable bond-stretch contribution, (b) modes
that have relatively small bond-stretch components.

Table 7
The first four statistical moments of distributions of bond topological
parameters and per cent errors for fitting the binned data to normal
distributions (units e and Å).

Bond BTP Mean Variance Skewness Kurtosis % Error

H1—C2 �BCP �0.02 0.09 0.55 3.51 1.67
r2�BCP �0.06 53.11 �0.99 4.28 6.36

C2—N3 �BCP 0.01 0.03 0.24 3.17 0.30
r2�BCP 0.95 3.44 0.93 4.57 4.81

C2—O6 �BCP 0.00 0.04 0.37 3.28 0.74
r2�BCP 0.66 50.01 0.58 3.50 1.65

N3—H4 �BCP �0.11 0.16 0.60 3.74 1.81
r2�BCP 2.64 229.69 �1.16 4.98 8.55

N3—H4 �BCP �0.16 0.17 0.49 3.63 1.29
r2�BCP 4.33 228.25 �1.15 4.96 7.99

Table 8
Gumbel parameters fitted to the Laplacian distributions for each bond
critical point.

BCP 	 " �

C2—H1 �1 3.34 5.78
C2—N3 +1 0.20 1.46
C2—O6 +1 �2.05 6.33
N3—H4 �1 10.08 11.46
N3—H5 �1 11.58 11.48



To obtain a less demanding yet realistic uncertainty esti-

mate for the BTPs, we rerun the simulation to generate a more

feasible sample of only 2500 members using standard devia-

tions of 10�3/10�4 Å for the location of hydrogen/non-

hydrogen nuclei. While the previously mentioned, larger,

ensemble represents s.u.’s in nuclear positions due to thermal

motion, this smaller ensemble may be regarded as s.u.’s due to

the inability to perfectly fit the location of the nuclei to the

data. Corresponding to this nuclear geometry ensemble, BTP

samples were created via topological analyses of individual

EDs to estimate also the s.u. of BCP locations. The �BCP and

the r2�BCP values for each ED sample element were also

evaluated at the BCP locations corresponding to the popula-

tion means, so that we can estimate the accuracy (trueness) of

the BTPs or, at least, find the range of their absolute error.

Despite the much smaller sample size, the deviation of the

sample mean from that of the population is found to be within

the range of the nuclear s.u.’s for each BTP figure.

Table 9 shows that the s.u.’s of the BCP locations are on a

par with the s.u.’s of the nuclear positions. It is noted again that

the former quantities can be safely estimated from the latter

ones using the method presented above [equations (5) and

(6)]. The statistical standard deviations (�) for �BCP and

r2�BCP are also listed together with their range corresponding

to the argument of the ‘true’ (population mean) BCP locations

(rBCP). For both properties, the standard uncertainty is almost

always about an order of magnitude smaller than the range.

6. Conclusion

Statistical analyses of sufficiently large samples can lead to

unbiased estimates of population parameters, as found in this

study using a sample of half a million wavefunction-based ED

topological figures. One of the results of stunning significance

is that the BCP locations are normally distributed subject to

harmonic oscillations of the nuclei about their mean (equili-

brium) positions. Furthermore, it was shown that a simple

formula, which combines the ADPs of nuclei involved in the

bond, can quite adequately estimate the ADP of the BCP

location. For a non-polar bond, for example, the BCP ADP is

equal, to a fair approximation, to the average of the nuclear

ADPs participating in the bond. This relationship has been

applied to estimate the ADPs of the two-centre basis function

products needed for density matrix fitting of structure factors

(Coppens et al., 1971). However, it is far from being trivial why

a simple ‘riding’ model can predict the s.u. of such a ‘complex’
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Figure 6
r2�ðrBCPÞ sample data binned and fitted with Gumbel-type distributions for the C—H (a), N—H (b), C—O (c) and C—N (d) bonds.



numerical property as the rBCP so well. While the change in the

topology of the ED due to nuclear vibrations is tractable

within the BO-approximation-based quantum chemistry, it is

certainly not predictable. Our findings discussed above have

direct applications to X-ray charge-density studies; indeed, we

suggest supplementing experimental ED reports with the s.u.

estimation of the BCP locations and BTPs. Sample-based

statistics, as described in this report using theoretical ED,

could be quite efficient for estimating ‘experimental s.u.’s’,

given an analytic function of the ED (such as the pseudoatom

model) at the ‘experimental stationary nuclear geometry’.

Another significant observation is that the r2�BCP distri-

bution is far from being ‘univariate’, which has in fact been

implied by previous studies emphasizing only the effect of

bond-length alternation on bond topology (Gibbs et al., 1998,

2008). The computational protocol followed in this study

allows one to track in detail how a particular internal normal

mode affects the local topology of the ED. In line with earlier

observations, we find a drastic change in the BCP properties

upon changing the bond distance (Gibbs et al., 2008). This

alternation can be quite well described by a power law

suggested earlier (Gibbs et al., 1998). However, the r2�BCP

distributions, especially for the C2—N3 bond, have emerged

to be unexpectedly and profoundly sensitive to geometry

changes not altering the corresponding bond length. In a

related recent study, the topology of the dynamic ED was

found to be incompatible with that of the static for bonds

involving H atoms (no BCPs could be located for the N—H

bonds for the dynamic ED) (Michael & Koritsanszky, 2014),

indisputably suggesting that the static ED topology of these

bonds is essentially determined by the mean nuclear position

and s.u.’s (ADPs) of H atoms that are unreliably accessible

from X-ray data. The results of this study also press the need

for cautious modelling of H-atom sites, as the uncertainty of

the H-atom parameters is shown to transform to over 1 e Å�5

uncertainty in the r2�BCP value for the nearby C2—N3 bond.

This uncertainty alone is almost an order of magnitude higher

than the experimental uncertainty typically estimated on the

basis of linear error-propagation schemes using the standard

pseudoatom model.

The BTP distributions are shown to depart from normal

distributions. This observation makes sense, because the

relationship between the BTP and the bond distance is non-

linear and because the bond distance is not normally distrib-

uted. To interpret the non-Gaussian nature of the r2�BCP

samples, we find it convenient to use the Gumbel

statistics, since this PDF seems to be an appropriate

parametric model with fixed complexity. Our choice of

the Gumbel distribution is due entirely to its capability

to represent the sample sufficiently (good figures of fit)

and efficiently (with only two parameters to be fitted).

As of writing this report, we have no straightforward

explanation why extreme value statistics – associated

with the Gumbel distribution – can adequately repre-

sent the BTP sample. We expect that convolution of

PDFs of the Hessian eigenvalues could also well

account for the data. Additional statistical models for

the latent source of variations/co-variations are being targeted

in our ongoing research.

The skewness and kurtosis are measures of asymmetry and

outlier-describing behaviour of a distribution. Being location-

and scale-free, these statistical figures reflect only the shape of

the distribution. Based on their skewness, none of the �BCP

distributions is markedly different from a normal distribution;

however, the r2�BCP distributions of the bonds including H

atoms are consistently negatively skewed (tailed to the left),

producing extreme values lower than the mode with a greater

probability. Conversely, the r2�BCP distributions for the C2—

O6 and C2—N3 bonds are positively skewed (tailed to the

right), indicating greater tendency for yielding extreme values

on the high side of the mode. Since all the PDFs possess

positive kurtosis, they can be considered to be more receptive

to outliers (or have ‘fatter’ tails) than the normal distribution.

Yet, because the kurtoses are close to the value characteristic

for normally distributed data (3), none of these PDFs should

be marked as strikingly different from a normal distribution.
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Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909–921.
Higgs, P. W. (1955). Acta Cryst. 8, 99–104.
Hohenberg, P. & Kohn, W. (1964). Phys. Rev. 136, B864–B871.
Koritsanszky, T. S. & Coppens, P. (2001). Chem. Rev. 101, 1583–1628.
Michael, J. R. & Koritsanszky, T. (2014). J. Math. Chem. doi: s10910-

014-0425-y.
Scheringer, C. (1977a). Acta Cryst. A33, 426–429.
Scheringer, C. (1977b). Acta Cryst. A33, 430–433.

research papers

Acta Cryst. (2015). A71, 225–234 Michael & Koritsanszky � Computational analysis of thermal-motion effects 233

Table 9
Standard uncertainties of the bond critical point locations (�x, �y, �z), the electron
density [�(�BCP)] and the Laplacian at these points [�(r2�BCP)].

The range of the values [�(�BCP), �(r2�BCP)] of bond topological indices are also
listed (units e and Å, �x, �y, �z 104 Å).

BCP �x �y �z �(�BCP) �(�BCP) �(r2�BCP) �(r2�BCP)
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N3—H5 5.93 6.95 7.41 0.0057 0.0386 0.3761 2.5147
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